Banach-Mazur games played with arrows

Wiesław Kubiś

Institute of Mathematics, Academy of Sciences of the Czech Republic http://www.math.cas.cz/kubis/

> Winter School in Abstract Analysis Section of Set Theory and Topology Hejnice, 31.01 – 7.02.2015

The setup:

We fix a category \mathfrak{K} contained in a bigger category V, such that all sequences in \mathfrak{K} have co-limits in V.

The Sec. 74

< 6 b

The setup:

We fix a category \Re contained in a bigger category V, such that all sequences in \Re have co-limits in V.

Example

 Let ℜ be the family 𝒯⁺(X) of all nonempty open subsets of a fixed topological space X.

A > + = + + =

The setup:

We fix a category \Re contained in a bigger category V, such that all sequences in \Re have co-limits in V.

Example

- Let ℜ be the family 𝒯⁺(𝑋) of all nonempty open subsets of a fixed topological space 𝑋.
- Let **V** be the family of all G_{δ} subsets of X.

(B) + (B)

Definition

The Banach-Mazur game on \Re is a game played by two players Eve and Odd, with the following rules:

Definition

The Banach-Mazur game on \Re is a game played by two players Eve and Odd, with the following rules:

• Eve starts the game by choosing an object $K_0 \in \mathfrak{K}$;

E N 4 E N

Definition

The Banach-Mazur game on \Re is a game played by two players Eve and Odd, with the following rules:

- Eve starts the game by choosing an object $K_0 \in \mathfrak{K}$;
- Odd responds by choosing an object K₁ ∈ ℜ together with a ℜ-arrow f₀¹: K₀ → K₁;

A D b 4 A b

Definition

The Banach-Mazur game on \Re is a game played by two players Eve and Odd, with the following rules:

- Eve starts the game by choosing an object $K_0 \in \mathfrak{K}$;
- Odd responds by choosing an object K₁ ∈ ℜ together with a ℜ-arrow f₀¹: K₀ → K₁;
- So *Eve* responds by choosing an object $K_2 \in \mathfrak{K}$ and a \mathfrak{K} -arrow $f_1^2 \colon K_1 \to K_2$;

E N 4 E N

A D b 4 A b

Definition

The Banach-Mazur game on \Re is a game played by two players Eve and Odd, with the following rules:

- Eve starts the game by choosing an object $K_0 \in \mathfrak{K}$;
- **2** Odd responds by choosing an object $K_1 \in \mathfrak{K}$ together with a \mathfrak{K} -arrow $f_0^1 \colon K_0 \to K_1$;
- So *Eve* responds by choosing an object $K_2 \in \mathfrak{K}$ and a \mathfrak{K} -arrow $f_1^2 \colon K_1 \to K_2$;
- and so on...

$$K_0
ightarrow K_1
ightarrow K_2
ightarrow \cdots$$

A D b 4 A b

Definition

The Banach-Mazur game on \Re is a game played by two players Eve and Odd, with the following rules:

- Eve starts the game by choosing an object $K_0 \in \mathfrak{K}$;
- **2** Odd responds by choosing an object $K_1 \in \mathfrak{K}$ together with a \mathfrak{K} -arrow $f_0^1 \colon K_0 \to K_1$;
- So *Eve* responds by choosing an object $K_2 \in \mathfrak{K}$ and a \mathfrak{K} -arrow $f_1^2 \colon K_1 \to K_2$;

and so on...

$$\textit{K}_0 \rightarrow \textit{K}_1 \rightarrow \textit{K}_2 \rightarrow \cdots$$

The result of a play is the co-limit

$$K_{\infty} = \lim \{K_n\}_{n \in \omega} \in \operatorname{Obj}(\mathbf{V}).$$

3

Definition

Let \mathscr{W} be a class of **V**-objects. We say that Odd wins if he has a strategy such that no matter how Eve plays, the co-limit of the resulting sequence is isomorphic to some element of \mathscr{W} . Denote this game by BM($\mathfrak{K}, \mathscr{W}$).

A D A D A D A

Theorem

Assume Odd has a winning strategy in BM($\mathfrak{K}, \mathcal{W}_n$), where each \mathcal{W}_n is closed under isomorphisms. Then Odd has a winning strategy in

 $\mathsf{BM}(\mathfrak{K},\bigcap_{n\in\omega}\mathscr{W}_n).$

Definition

Let \mathfrak{S} be another category and let $\Phi \colon \mathfrak{S} \to \mathfrak{K}$ be a covariant functor. We say that Φ is dominating if

- (D1) For every $X \in \text{Obj}(\mathfrak{K})$ there is $s \in \text{Obj}(\mathfrak{S})$ such that $\mathfrak{K}(X, \Phi(s)) \neq \emptyset$.
- (D2) Given $s \in \text{Obj}(\mathfrak{S})$ and $f \in \mathfrak{K}$ with $\Phi(s) = \text{dom}(f)$, there exist $g \in \mathfrak{S}$ and $h \in \mathfrak{K}$ such that $\Phi(g) = h \circ f$.

We say that a subcategory \mathfrak{F} of \mathfrak{K} is *dominating* if the inclusion functor $\Phi \colon \mathfrak{F} \to \mathfrak{K}$ is dominating.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let $\mathscr{W} \subseteq \mathsf{Obj}(\mathbf{V})$ and let $\Phi : \mathfrak{S} \to \mathfrak{K}$ be a dominating functor. Define \mathscr{U} to be the class of all sequences $\vec{s} : \omega \to \mathfrak{S}$ satisfying $\lim(\Phi \circ \vec{s}) \in \mathscr{W}$. Then Odd has a winning strategy in $\mathsf{BM}(\mathfrak{K}, \mathscr{W})$ if and only if he has a winning strategy in $\mathsf{BM}(\mathfrak{S}, \mathscr{U})$. The same applies to Eve.

Example I

Let $\mathfrak{K} = \mathscr{T}^+(X)$, where X is a compact Hausdorff space. Let **V** be the family of all G_{δ} subsets of X. Define

$$\mathscr{W} = \{\{x\} \colon x \in X\}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example I

Let $\mathfrak{K} = \mathscr{T}^+(X)$, where X is a compact Hausdorff space. Let **V** be the family of all G_{δ} subsets of X. Define

$$\mathscr{W} = \{\{x\} \colon x \in X\}.$$

Theorem (Oxtoby)

Odd has a winning strategy in $BM(\mathfrak{K}, \mathcal{W})$ if and only if X contains a dense completely metrizable subspace.

Definition

A V-object W is generic if Odd has a winning strategy in $BM(\mathfrak{K}, W)$.

Definition

A V-object W is generic if Odd has a winning strategy in $BM(\mathfrak{K}, W)$.

Theorem

A generic object, if exists, is unique up to isomorphism.

Theorem

Let *W* be a generic object and let *X* be a **V**-object of the form $X = \lim \{X_n\}_{n \in \omega}$ for some sequence $\{X_n\}_{n \in \omega}$ in \mathfrak{K} . Then

 $V(X, W) \neq \emptyset.$

Fraïssé limits

Definition

A Fraïssé class is a class *F* of finitely generated models if a fixed first order language, satisfying the following conditions:

- **1** For every $A, B \in \mathcal{F}$ there is $D \in \mathcal{F}$ such that both A and B can be embedded into D
- 2 For every embeddings $f: C \to A, g: C \to B$ with $C, A, B \in \mathscr{F}$, there exist $E \in \mathscr{F}$ and embeddings $f' : A \to E, g' : B \to E$ such that

$$f'\circ f=g'\circ g.$$

Image should be should

(B)

Theorem (Fraïssé)

Let \mathscr{F} be a Fraïssé class. Then there exists a unique countably generated model U of the same language as that of \mathscr{F} , having the following properties:

- Every $E \in \mathscr{F}$ embeds into U.
- **2** For every finite set $S \subseteq U$ there is an embedding $e : E \to U$ such that $E \in \mathscr{F}$ and $S \subseteq e[E]$.
- So For every E ∈ ℱ, for every two embeddings f, g: E → U there exists an automorphism h: U → U such that h ∘ f = g.

Theorem

Let \Re be a category whose objects form a Fraïssé class \mathscr{F} and arrows are embeddings. Let U be the Fraïssé limit of \mathscr{F} . Then Odd has a winning strategy in BM(\Re , U).

(B)

< 🗇 🕨

Example II

Theorem

Let \Re be the category of all nonempty compact metrizable spaces with continuous surjections and assume that the Banach-Mazur game is played with reversed arrows. Then the \Re -generic compact space is the Cantor set.

Example III

Theorem

Let \Re be the category of all finite metric spaces with isometric embeddings. Then the \Re -generic object is the Urysohn universal metric space.

References

- W. Kubiś, Fraïssé sequences: category-theoretic approach to universal homogeneous structures, Ann. Pure Appl. Logic 165 (2014) 1755–1811
- W. Kubiś, *Metric-enriched categories and approximate limits*, preprint, http://arxiv.org/abs/1210.6506

モトイモト